Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75.401
1.
Biotechnol J ; 19(5): e2400081, 2024 May.
Article En | MEDLINE | ID: mdl-38719586

Translation initiation is the primary determinant of the rate of protein production. The variation in the rate with which this step occurs can cause up to three orders of magnitude differences in cellular protein levels. Several mRNA features, including mRNA stability in proximity to the start codon, coding sequence length, and presence of specific motifs in the mRNA molecule, have been shown to influence the translation initiation rate. These molecular factors acting at different strengths allow precise control of in vivo translation initiation rate and thus the rate of protein synthesis. However, despite the paramount importance of translation initiation rate in protein synthesis, accurate prediction of the absolute values of initiation rate remains a challenge. In fact, as of now, there is no available model for predicting the initiation rate in Saccharomyces cerevisiae. To address this, we train a machine learning model for predicting the in vivo initiation rate in S. cerevisiae transcripts. The model is trained using a diverse set of mRNA transcripts, enabling the comparison of initiation rates across different transcripts. Our model exhibited excellent accuracy in predicting the translation initiation rate and demonstrated its effectiveness with both endogenous and exogenous transcripts. Then, by combining the machine learning model with the Monte-Carlo search algorithm, we have also devised a method to optimize the nucleotide sequence of any gene to achieve a specific target initiation rate. The machine learning model we've developed for predicting translation initiation rates, along with the gene optimization method, are deployed as a web server. Both web servers are accessible for free at the following link: ajeetsharmalab.com/TIRPredictor. Thus, this research advances our fundamental understanding of translation initiation processes, with direct applications in biotechnology.


Peptide Chain Initiation, Translational , RNA, Messenger , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Peptide Chain Initiation, Translational/genetics , RNA, Messenger/genetics , Machine Learning , Algorithms , Internet , Codon, Initiator/genetics , Software , Protein Biosynthesis/genetics
2.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38719751

Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3ß was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3ß and that GSK3ß inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3ß axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3ß inhibitors is a potential therapeutic strategy for leukoencephalopathy.


Cholesterol , Focal Adhesion Kinase 2 , Glycogen Synthase Kinase 3 beta , Mice, Knockout , Mitochondria , Protein Biosynthesis , Sterol Regulatory Element Binding Protein 2 , Animals , Humans , Mice , Cholesterol/metabolism , Focal Adhesion Kinase 2/metabolism , Focal Adhesion Kinase 2/genetics , Gene Expression Regulation , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Leukoencephalopathies/genetics , Leukoencephalopathies/metabolism , Mitochondria/metabolism , Phosphorylation , Signal Transduction/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics
3.
Nat Commun ; 15(1): 3945, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730238

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Antimicrobial Cationic Peptides , Molecular Dynamics Simulation , Ribosomes , Ribosomes/metabolism , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Protein Biosynthesis , Binding Sites , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Peptide Termination Factors/metabolism , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Protein Binding , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology
4.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714951

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


CRISPR-Cas Systems , Calcium Oxalate , Kidney , Animals , Humans , Male , Mice , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ferritins , Ferroptosis/genetics , Gene Editing/methods , HEK293 Cells , Kidney/metabolism , Kidney/pathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Protein Biosynthesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
5.
PLoS One ; 19(5): e0300287, 2024.
Article En | MEDLINE | ID: mdl-38696388

The phosphorylation of eukaryotic translational initiation factors has been shown to play a significant role in controlling the synthesis of protein. Viral infection, environmental stress, and growth circumstances cause phosphorylation or dephosphorylation of plant initiation factors. Our findings indicate that casein kinase 2 can phosphorylate recombinant wheat eIFiso4E and eIFiso4G generated from E. coli in vitro. For wheat eIFiso4E, Ser-207 was found to be the in vitro phosphorylation site. eIFiso4E lacks an amino acid that can be phosphorylated at the position corresponding to Ser-209, the phosphorylation site in mammalian eIF4E, yet phosphorylation of eIFiso4E has effects on VPg binding affinity that are similar to those of phosphorylation of mammalian eIF4E. The addition of VPg and phosphorylated eIFiso4F to depleted wheat germ extract (WGE) leads to enhancement of translation of both uncapped and capped viral mRNA. The addition of PABP together with eIFiso4Fp and eIF4B to depleted WGE increases both uncapped and capped mRNA translation. However, it exhibits a translational advantage specifically for uncapped mRNA, implying that the phosphorylation of eIFiso4F hinders cap binding while promoting VPg binding, thereby facilitating uncapped translation. These findings indicate TEV virus mediates VPg-dependent translation by engaging a mechanism entailing phosphorylated eIFiso4Fp and PABP. To elucidate the molecular mechanisms underlying these observed effects, we studied the impact of PABP and/or eIF4B on the binding of VPg with eIFiso4Fp. The inclusion of PABP and eIF4B with eIFiso4Fp resulted in about 2-fold increase in affinity for VPg (Kd = 24 ± 1.7 nM), as compared to the affinity of eIFiso4Fp alone (Kd = 41.0 ± 3.1 nM). The interactions between VPg and eIFiso4Fp were determined to be both enthalpically and entropically favorable, with the enthalpic contribution accounting for 76-97% of the ΔG at 25°C, indicating a substantial role of hydrogen bonding in enhancing the stability of the complex. The binding of PABP to eIFiso4Fp·4B resulted in a conformational alteration, leading to a significant enhancement in the binding affinity to VPg. These observations suggest PABP enhances the affinity between eIFiso4Fp and VPg, leading to an overall conformational change that provides a stable platform for efficient viral translation.


Eukaryotic Initiation Factors , Poly(A)-Binding Proteins , Potyvirus , Protein Binding , Protein Biosynthesis , Triticum , Phosphorylation , Potyvirus/metabolism , Potyvirus/genetics , Triticum/virology , Triticum/metabolism , Triticum/genetics , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics , Poly(A)-Binding Proteins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Casein Kinase II/metabolism , Casein Kinase II/genetics
6.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744825

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Glucose/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fatty Acids/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , NADP/metabolism , Protein Biosynthesis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Oxidative Stress , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics
8.
Elife ; 122024 May 13.
Article En | MEDLINE | ID: mdl-38738857

Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.


Eukaryotic Initiation Factor-4A , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Ubiquitination , Humans , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Animals , Protein Biosynthesis , Cell Line, Tumor , Mice , Receptors, Interleukin-17
9.
BMC Biol ; 22(1): 106, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715001

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Protein Biosynthesis , RNA Editing , Retina , Animals , Mice , Retina/metabolism , Retina/embryology , Alternative Splicing , Inosine/metabolism , Inosine/genetics , Adenosine/metabolism
10.
J Vis Exp ; (206)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38709080

The Cell-Free Protein Synthesis (CFPS) system has been widely employed to facilitate the bottom-up assembly of synthetic cells. It serves as the host for the core machinery of the Central Dogma, standing as an optimal chassis for the integration and assembly of diverse artificial cellular mimicry systems. Despite its frequent use in the fabrication of synthetic cells, establishing a tailored and robust CFPS system for a specific application remains a nontrivial challenge. In this methods paper, we present a comprehensive protocol for the CFPS system, routinely employed in constructing synthetic cells. This protocol encompasses key stages in the preparation of the CFPS system, including the cell extract, template preparation, and routine expression optimization utilizing a fluorescent reporter protein. Additionally, we show representative results by encapsulating the CFPS system within various micro-compartments, such as monolayer droplets, double-emulsion vesicles, and chambers situated atop supported lipid bilayers. Finally, we elucidate the critical steps and conditions necessary for the successful assembly of these CFPS systems in distinct environments. We expect that our approach will facilitate the establishment of good working practices among various laboratories within the continuously expanding synthetic cell community, thereby accelerating progress in the field of synthetic cell development.


Artificial Cells , Cell-Free System , Protein Biosynthesis , Artificial Cells/chemistry , Artificial Cells/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
11.
Sci Rep ; 14(1): 9988, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693346

mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.


Inteins , Protein Biosynthesis , RNA, Messenger , Inteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
Mol Cell ; 84(9): 1633-1634, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701739

The heat shock response is crucial for cell survival. In this issue of Molecular Cell, Desroches Altamirano et al.1 demonstrate that a temperature-induced conformational change in the translation initiation factor eIF4G is a key mechanism regulating translation during the heat shock response.


Eukaryotic Initiation Factor-4G , Heat-Shock Response , Protein Biosynthesis , RNA, Messenger , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Animals , Protein Conformation , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics
13.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732249

Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-ß2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-ß2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-ß2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-ß2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-ß2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-ß2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.


Chondrocytes , Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Transforming Growth Factor beta2 , Chondrocytes/metabolism , Chondrocytes/drug effects , Ribosomes/metabolism , Humans , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Internal Ribosome Entry Sites , Cell Line
14.
Nat Commun ; 15(1): 3963, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729943

Translation initiation in bacteria is frequently regulated by various structures in the 5' untranslated region (5'UTR). Previously, we demonstrated that G-quadruplex (G4) formation in non-template DNA enhances transcription. In this study, we aim to explore how G4 formation in mRNA (RG4) at 5'UTR impacts translation using a T7-based in vitro translation system and in E. coli. We show that RG4 strongly promotes translation efficiency in a size-dependent manner. Additionally, inserting a hairpin upstream of the RG4 further enhances translation efficiency, reaching up to a 12-fold increase. We find that the RG4-dependent effect is not due to increased ribosome affinity, ribosome binding site accessibility, or mRNA stability. We propose a physical barrier model in which bulky structures in 5'UTR biases ribosome movement toward the downstream start codon, thereby increasing the translation output. This study provides biophysical insights into the regulatory role of 5'UTR structures in in vitro and bacterial translation, highlighting their potential applications in tuning gene expression.


5' Untranslated Regions , Escherichia coli , G-Quadruplexes , Protein Biosynthesis , RNA, Messenger , Ribosomes , 5' Untranslated Regions/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosomes/metabolism , Ribosomes/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Nucleic Acid Conformation , RNA Stability , Binding Sites
15.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731549

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Biosynthesis , Peptide Elongation Factors/metabolism , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Ribosomes/metabolism , Models, Molecular , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/metabolism , Protein Conformation
16.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732179

The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.


Ribosomes , Ribosomes/metabolism , Ribosomes/chemistry , Peptides/chemistry , Origin of Life , Peptidyl Transferases/metabolism , Peptidyl Transferases/chemistry , Protein Biosynthesis
17.
J Mol Biol ; 436(10): 168559, 2024 May 15.
Article En | MEDLINE | ID: mdl-38580077

Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.


Mitochondrial Membranes , Open Reading Frames , Open Reading Frames/genetics , Humans , Mitochondrial Membranes/metabolism , Animals , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Amino Acid Sequence , RNA, Messenger/genetics , RNA, Messenger/metabolism , 5' Untranslated Regions/genetics , Protein Biosynthesis , Mitochondria/metabolism , Mitochondria/genetics
18.
Viruses ; 16(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38675845

Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are important regulatory hubs during translation elongation of mRNAs rich in rare codons. Therefore, we evaluated the potential role of SLFN14 in the expression of mRNAs enriched in rare codons, using HIV-1 genes as a model. We found that, in a variety of cell types, including primary immune cells, SLFN14 regulates the expression of HIV-1 and non-viral genes based on their codon adaptation index, a measurement of the synonymous codon usage bias; consequently, SLFN14 inhibits the replication of HIV-1. The potent inhibitory effect of SLFN14 on the expression of the rare codon-rich transcript HIV-1 Gag was minimized by codon optimization. Mechanistically, we found that the endoribonuclease activity of SLFN14 is required, and that ribosomal RNA degradation is involved. Therefore, we propose that SLFN14 impairs the expression of HIV-1 transcripts rich in rare codons, in a catalytic-dependent manner.


Codon Usage , HIV-1 , Virus Replication , Humans , Codon/genetics , Gene Expression Regulation, Viral , HEK293 Cells , HIV Infections/virology , HIV Infections/genetics , HIV-1/genetics , HIV-1/physiology , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Line, Tumor
19.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38683248

Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.


Active Transport, Cell Nucleus , Guanosine Triphosphate , ran GTP-Binding Protein , Guanosine Triphosphate/metabolism , ran GTP-Binding Protein/metabolism , ran GTP-Binding Protein/genetics , Humans , Cell Nucleus/metabolism , Cell Movement , Nuclear Pore/metabolism , Nuclear Pore/genetics , Animals , Nuclear Envelope/metabolism , Cytoskeleton/metabolism , Protein Biosynthesis , Cytoplasm/metabolism
20.
J Hazard Mater ; 471: 134331, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677116

Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.


Halogenated Diphenyl Ethers , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats, Sprague-Dawley , Receptors, Estrogen , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Halogenated Diphenyl Ethers/toxicity , PC12 Cells , Rats , Mitochondria/drug effects , Mitochondria/metabolism , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor , Benzimidazoles/pharmacology , Male , Protein Biosynthesis/drug effects , Neurotoxicity Syndromes/metabolism
...